KAIWEN SHENG

Email: kwsheng@stanford.edu

Website: https://holmosaint.github.io

EDUCATION

Stanford University	Stanford, USA
PhD student in Bioengineering	Sept 2023 - Expected June 2028
University College London	London, UK
MRes in Biosciences: Neuroscience (with Distinction, top 1)	Sept 2021 - Sept 2022
Peking University	Beijing, CN
BS in Computer Science (outstanding dissertation nomination, 27/360)	Sept 2016 - Jun 2020
AWARDS	
Dean's List of Division of Biosciences of University College London (top 5%)	Nov 2022
Best Overall Student Prize of MRes Biosciences of University College London	Nov 2022
Outstanding Graduate of Peking University	Jul 2020
Robin Li Scholarship of Peking University	Sept 2019
Excellent Research of Peking University	Sept 2019
Ke Chuanglong Scholarship of Peking University	Sept 2018
Merited Student of Peking University	Sept 2018 & Sept 2017
May Fourth Scholarship of Peking University	Sept 2017

SELECTED RESEARCH PROJECTS

Dynamical analysis of brain-wide activities in mice and humans

T

Advised by Prof. Karl Deisserot and Prof. Anish Mitra

- Utilized sequential nonnegative matrix factorization to reveal invariant spatial-temporal motifs across different subjects in both mice wide-field calcium imaging and human fMRI data.
- Conducted a go/no-go visual detection task with mice, coupled with optogenetic stimulation of identified motifs, vyto assess their direct influence on task performance.
- Analyzed the attractor properties and temporal dynamics of motifs using recurrent switching linear dynamical systems, applied to human fMRI data in resting and task-oriented states.

A theoretical framework to investigate the computational principles of cortical cell types University College London Advised by Prof. Michael Häusser and Prof. Blake Richards Dec 2021 - Present

- Derived a general learning rule based on cable theory and Hodgkin-Huxley equations, enabling training of multicompartmental neuron models with intricate 3D morphologies and active conductances for complex tasks.
- Designed a battery of tasks with distinct processing requirements, including: nonlinear feature-binding computations, multitask with nonlinear binary logic gates, and a regression task designed to test the limits of stimulus selectivity.
- Identified morphological and biophysical features to explain the computational specialty of different neuron models.
- Demonstrated that biophysical pyramidal neurons trained with exponentiated gradient descent outperform those using normal gradient descent in low SNR scenarios.
- Constructed an efficient and flexible software package from scratch to train biophysical neuron models.

Inferring monosynaptic connectivity from spike trains

Advised by Prof. Kai Du (PKU) and Prof. Jun Ding (Stanford)

- Formulated a critical limitation in previous methods for inferring monosynaptic connectivity as the out-of-distribution problem and developed a systematic solution by incorporating self-training and domain adaptation techniques.
- Achieved 100% accuracy in inferring monosynaptic connectivity using *in vivo* spike trains from the CA1 networks of freely-running mice.
- Extended the framework to accurately and efficiently inferr biophysical properties of 574 neurons across 14 brain regions of mice and biophysical properties of the stomatogastric ganglion microcircuit of the *Cancer Borealis*.

PUBLICATIONS

• Wang, Z., Yu, J., Zhai, M., Wang, Zehua., **Sheng, K.**, Zhu, Y., Wang. Tianyu., Liu, M., Wang, L., Yan, M., Zhang, J., Xu, Y., Wang, X., Ma, L., Hu, W., & Cheng, H. (2024). System-level time computation and representation in the suprachiasmatic nucleus revealed by large-scale calcium imaging and machine learning. *Cell Research*.

Stanford University

Sept 2023 - Present

Peking University Jan 2020 - Sept 2022

- Sheng, K., Bicknell, B., Clark B.A. & Häusser, M. A theoretical framework for investing the computational mechanisms of cortical cell types. (under preparation)
- Sheng, K., Zhang, S., Beau, M., Qu, P., Yang, L., Liu, X., He, L., Ma, L., & Du, K. (2022). Domain Adaptive Neural Inference for Neurons, Microcircuits and Networks. bioRxiv. (under review at PNAS)
- Yue, Y., Lun, K., Sheng, K., He, L., He, G., Zhang, S., Ma, L., Liu, J.K., Tian, Y., Du, K., & Huang, T. (2022) Retinal gap junctions convert noise distributions and support robust blind denoising in the visual hierarchy. (under review at Neural Computation)
- Shi, R., Wang, W., Li, Z., He, L., Sheng, K., Ma, L., ... & Huang, T. (2022). U-RISC: an annotated ultra-high-resolution electron microscopy dataset challenging existing deep learning algorithms. Frontiers in Computational Neuroscience, 21.
- Su, L.*, Wang, W.*, Sheng, K., Liu, X., Du, K., Tian, Y., & Ma, L. (2022). Siamese Network-Based All-Purpose-Tracker, a Model-Free Deep Learning Tool for Animal Behavioral Tracking. Frontiers in Behavioral Neuroscience, 48. (* equally contributed)
- Sheng, K., Qu, P., Yang, L., Liu, X., He, L., Ma, L., & Du, K. (2021). A General LSTM-based Deep Learning Method for Estimating Neuronal Models and Inferring Neural Circuitry. bioRxiv.
- Shi, R., Wang, W., Li, Z., He, L., Sheng, K., Ma, L., ... & Huang, T. (2020). Human Perception-based Evaluation Criterion for Ultra-high Resolution Cell Membrane Segmentation. arXiv preprint arXiv:2010.08209.
- Zheng, S., Liang, Y., Wang, S., Chen, R., & Sheng, K. (2020, March). FlexTensor: An Automatic Schedule Exploration and Optimization Framework for Tensor Computation on Heterogeneous System. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (pp. 859-873).

POSTER PRESENTATIONS

- Sheng, K., Du, K. Reconstructing Circuit Connectivity from in vivo Spike Trains Using Deep Domain-adaptive Matching. Society for Neuroscience 2024; Oct 2024; Chicago, United States.
- Sheng, K., Bicknell, B.A., Häusser, M. Computational Specialization of Cortical Dendrites. Society for Neuroscience 2022; Dec 2022; San Diego, United States.
- Sheng, K., Bicknell, B.A., Häusser, M. Computational Specialization of Cortical Dendrites. UCL Neuroscience Symposium 2022; June 2022; London, United Kingdom.
- Bicknell, B.A., Sheng, K., Häusser, M. Learning to Harness Dendritic Computations. Dendrites 2020: Dendritic anatomy, molecules and function; May 2022; Heraklion, Greece.
- Sheng, K., Qu, P., Yang, L., Liu, X., He, L., Ma, L., & Du, K. A General LSTM-based Deep Learning Method for Estimating Neuronal Models and Inferring Neural Circuitry.

Third Chinese Computational and Cognitive Neuroscience Conference; June 2021; Shenzhen, China.

WORKING EXPERIENCE

Physical Science Research Professional

Department of Neurosurgery

 Performed dynamical and manifold analysis on calcium imaging data recorded from axon boutons projected from M1 to basal ganglia during motor learning.

Research Assistant

Neural Computation Lab

• Established a theoretical framework for investigating principles of single neuron computation.

Research Assistant

Electrophysiology Atlas Task Force

• Facilitated the development of the electrophysiology atlas platform.

Leader of Applied Research Team

Life Simulation Research Center

- Organized research cooperation among researchers and interns.
- Scheduled and summarized weekly discussions on the progress of research projects of the group members.

Software Development Engineer

Life Simulation Research Center

- Developed an automatic tool for parameter estimation and optimization for computational neural models.
- Published a preprint paper of the tool on bioRxiv.

TEACHING EXPERIENCE

International Brain Laboratory

Oct 2022 - Jul 2023

Beijing Academy of Artificial Intelligence

Jun 2021 - Sept 2021

Beijing Academy of Artificial Intelligence

Jun 2020 - Sept 2021

Stanford University

July 2023 - Aug 2023

University College London

Oct 2022 - Jul 2023

Teaching Assistant

Compiler Practice

• Guided students to work through each stage of compiler design, including symbol table construction, type check, intermediate representation generation, register allocation.

Teaching Assistant

Algorithm Design and Analysis Seminar

- Reviewed and expanded lecture content based on Introduction to Algorithms.
- Designed exam papers and provided references on reinforcement learning.

LEADERSHIP EXPERIENCE

President and Captain

Badminton Association and Team of Peking University

- Organized badminton competitions at Peking University and scheduled friendly matches among colleges.
- Popularized badminton through social media at Peking University.
- Led weekly training and competitions.

SKILLS

Languages	Python, MATLAB, C/C++
Framework	PyTorch, NEURON, NEST
Wet lab	Calcium imaging, Behavioral training, Optogenetics

Peking University

Feb 2019 - Jun 2019

Peking University

Sept 2019 - Jun 2020

Peking University

Feb 2020 - Jun 2020